\(\int \frac {\csc (e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [109]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 80 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{(a+b)^{3/2} f}-\frac {b \sec (e+f x)}{a (a+b) f \sqrt {a+b \sec ^2(e+f x)}} \]

[Out]

-arctanh(sec(f*x+e)*(a+b)^(1/2)/(a+b*sec(f*x+e)^2)^(1/2))/(a+b)^(3/2)/f-b*sec(f*x+e)/a/(a+b)/f/(a+b*sec(f*x+e)
^2)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {4219, 390, 385, 213} \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f (a+b)^{3/2}}-\frac {b \sec (e+f x)}{a f (a+b) \sqrt {a+b \sec ^2(e+f x)}} \]

[In]

Int[Csc[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

-(ArcTanh[(Sqrt[a + b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]]/((a + b)^(3/2)*f)) - (b*Sec[e + f*x])/(a*(a +
 b)*f*Sqrt[a + b*Sec[e + f*x]^2])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && Eq
Q[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rule 4219

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Cos[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^
n)^p/x^(m + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (Gt
Q[m, 0] || EqQ[n, 2] || EqQ[n, 4])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\sec (e+f x)\right )}{f} \\ & = -\frac {b \sec (e+f x)}{a (a+b) f \sqrt {a+b \sec ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sec (e+f x)\right )}{(a+b) f} \\ & = -\frac {b \sec (e+f x)}{a (a+b) f \sqrt {a+b \sec ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{-1-(-a-b) x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{(a+b) f} \\ & = -\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{(a+b)^{3/2} f}-\frac {b \sec (e+f x)}{a (a+b) f \sqrt {a+b \sec ^2(e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.41 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {(a+2 b+a \cos (2 (e+f x))) \sec ^3(e+f x) \left (b \sqrt {a+b}+a \text {arctanh}\left (\frac {\sqrt {a+b-a \sin ^2(e+f x)}}{\sqrt {a+b}}\right ) \sqrt {a+b-a \sin ^2(e+f x)}\right )}{2 a (a+b)^{3/2} f \left (a+b \sec ^2(e+f x)\right )^{3/2}} \]

[In]

Integrate[Csc[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

-1/2*((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(b*Sqrt[a + b] + a*ArcTanh[Sqrt[a + b - a*Sin[e + f*x]^2]/
Sqrt[a + b]]*Sqrt[a + b - a*Sin[e + f*x]^2]))/(a*(a + b)^(3/2)*f*(a + b*Sec[e + f*x]^2)^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1060\) vs. \(2(72)=144\).

Time = 1.18 (sec) , antiderivative size = 1061, normalized size of antiderivative = 13.26

method result size
default \(\text {Expression too large to display}\) \(1061\)

[In]

int(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f/(a+b)^(5/2)/a*(b+a*cos(f*x+e)^2)*(cos(f*x+e)*ln(2/(a+b)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1
/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+
e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+cos(f*x+e)*ln(2/(a+b)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f
*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)
/(1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+cos(f*x+e)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(
f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a+b
)/(-1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+cos(f*x+e)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+co
s(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a
+b)/(-1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+2*(a+b)^(3/2)*b+ln(2/(a+b)^(1/2)*(((b+a*c
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^
(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+ln(2/(a+b)^(1/2)*(((b+a*
cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)
^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+ln(-4*(((b+a*cos(f*x+e)
^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos
(f*x+e)*a+b)/(-1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+ln(-4*(((b+a*cos(f*x+e)^2)/(1+co
s(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a
+b)/(-1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b)/(a+b*sec(f*x+e)^2)^(3/2)*sec(f*x+e)^3

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 162 vs. \(2 (72) = 144\).

Time = 0.33 (sec) , antiderivative size = 344, normalized size of antiderivative = 4.30 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\left [-\frac {2 \, {\left (a b + b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left (a^{2} \cos \left (f x + e\right )^{2} + a b\right )} \sqrt {a + b} \log \left (\frac {2 \, {\left (a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a + b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + 2 \, b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, {\left ({\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f\right )}}, \frac {{\left (a^{2} \cos \left (f x + e\right )^{2} + a b\right )} \sqrt {-a - b} \arctan \left (\frac {\sqrt {-a - b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a + b}\right ) - {\left (a b + b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f}\right ] \]

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*(2*(a*b + b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - (a^2*cos(f*x + e)^2 + a*b)*sqr
t(a + b)*log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a
+ 2*b)/(cos(f*x + e)^2 - 1)))/((a^4 + 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b + 2*a^2*b^2 + a*b^3)*f), ((
a^2*cos(f*x + e)^2 + a*b)*sqrt(-a - b)*arctan(sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x
 + e)/(a + b)) - (a*b + b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e))/((a^4 + 2*a^3*b + a^2*b
^2)*f*cos(f*x + e)^2 + (a^3*b + 2*a^2*b^2 + a*b^3)*f)]

Sympy [F]

\[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\csc {\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Integral(csc(e + f*x)/(a + b*sec(e + f*x)**2)**(3/2), x)

Maxima [F]

\[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\csc \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(csc(f*x + e)/(b*sec(f*x + e)^2 + a)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 503 vs. \(2 (72) = 144\).

Time = 0.86 (sec) , antiderivative size = 503, normalized size of antiderivative = 6.29 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\frac {2 \, {\left (\frac {{\left (a b^{2} + b^{3}\right )} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}{a^{3} b \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + 2 \, a^{2} b^{2} \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + a b^{3} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} + \frac {a b^{2} + b^{3}}{a^{3} b \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + 2 \, a^{2} b^{2} \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + a b^{3} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}\right )}}{\sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \sqrt {a + b} \right |}\right )}{{\left (a + b\right )}^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} - \frac {\log \left ({\left | {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} \sqrt {a + b} - a + b \right |}\right )}{{\left (a + b\right )}^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} + \frac {\log \left ({\left | {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} \sqrt {a + b} - a - b \right |}\right )}{{\left (a + b\right )}^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}}{2 \, f} \]

[In]

integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

-1/2*(2*((a*b^2 + b^3)*tan(1/2*f*x + 1/2*e)^2/(a^3*b*sgn(cos(f*x + e)) + 2*a^2*b^2*sgn(cos(f*x + e)) + a*b^3*s
gn(cos(f*x + e))) + (a*b^2 + b^3)/(a^3*b*sgn(cos(f*x + e)) + 2*a^2*b^2*sgn(cos(f*x + e)) + a*b^3*sgn(cos(f*x +
 e))))/sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x
 + 1/2*e)^2 + a + b) - log(abs(-sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2
*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) - sqrt(a + b)))/((a + b)^(3
/2)*sgn(cos(f*x + e))) - log(abs((sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1
/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*sqrt(a + b) - a + b))/((
a + b)^(3/2)*sgn(cos(f*x + e))) + log(abs((sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4
+ b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*sqrt(a + b) - a
 - b))/((a + b)^(3/2)*sgn(cos(f*x + e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{\sin \left (e+f\,x\right )\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \]

[In]

int(1/(sin(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2)),x)

[Out]

int(1/(sin(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2)), x)